6. [ Kruskal - Wallis test -> Mann-Whiteney test ] 3군이상 하나라도 비정규분포일 때, 비교
2019. 1. 29. 16:04
R markdown
- Kruskal
데이터 가져오기
setwd("C:/Users/is2js/python_da/deep analysis(논문용 설문지 분석)")
table = read.csv('sens_spec_for_r_table.csv', header = T)
head(table)
## Kind.of.medicinal.herbs Sensitivity Specitivity Group
## 1 SA 0.95 1.000 Ph.D. of Herbology
## 2 SA 0.95 1.000 Ph.D. of Herbology
## 3 SA 1.00 0.875 Ph.D. of Herbology
## 4 SA 0.95 0.900 Ph.D. of Herbology
## 5 SA 0.90 1.000 Ph.D. of Herbology
## 6 SA 0.95 0.800 Ph.D. of Herbology
dplyr - filter + 사용자 정의 함수로 약재별로 나누기
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
herb <- function(table, herbname){
a = filter(table, Kind.of.medicinal.herbs == herbname)
return(a)
}
ac = herb(table,"AC")
amc = herb(table, "AMC")
sa = herb(table, "SA")
Kruskal-Wallis Test
- 각 약재별로 kruskal.test(민감도칼럼 ~ 그룹칼럼)
- Kruskal-Wallis test(비모수적 검정)을 사용해야한다. =>
- H0 : 3그룹의 차이가 없다.
# n수가 적어 정규분포 안따르는 비모수검정 -> 3 그룹간의 차이를 검정
# (정규분포를 따르지 않는)AC에 대한 3그룹 민감도 차이가 없다(H0)를 검정
kruskal.test(ac$Sensitivity ~ ac$Group) #p-value = 0.02285
##
## Kruskal-Wallis rank sum test
##
## data: ac$Sensitivity by ac$Group
## Kruskal-Wallis chi-squared = 7.5576, df = 2, p-value = 0.02285
kruskal.test(amc$Sensitivity ~ amc$Group) #p-value = 0.3188
##
## Kruskal-Wallis rank sum test
##
## data: amc$Sensitivity by amc$Group
## Kruskal-Wallis chi-squared = 2.2864, df = 2, p-value = 0.3188
kruskal.test(sa$Sensitivity ~ sa$Group) #p-value = 0.3099
##
## Kruskal-Wallis rank sum test
##
## data: sa$Sensitivity by sa$Group
## Kruskal-Wallis chi-squared = 2.3433, df = 2, p-value = 0.3099
사후검정 - 각 2군씩로 Mann-Whitney test by bonferroni’s method
- “pgirmess” 패키지 - kruskalmc( 민감도칼럼, 그룹칼럼)
- bonferroni’s method란 기존 유의수준(5%)에 nC2 = 2군씩
검정횟수
를 나누어 유의수준을 낮추는 것
#install.packages("pgirmess")
library(pgirmess)
kruskalmc(ac$Sensitivity,ac$Group)
## Multiple comparison test after Kruskal-Wallis
## p.value: 0.05
## Comparisons
## obs.dif critical.dif difference
## KMD-Ph.D. of Herbology 44.75000 44.74725 TRUE
## KMD-Undergraduates 2.22973 27.19549 FALSE
## Ph.D. of Herbology-Undergraduates 42.52027 37.51044 TRUE
kruskalmc(amc$Sensitivity,amc$Group)
## Multiple comparison test after Kruskal-Wallis
## p.value: 0.05
## Comparisons
## obs.dif critical.dif difference
## KMD-Ph.D. of Herbology 23.7916667 44.74725 FALSE
## KMD-Undergraduates 0.4087838 27.19549 FALSE
## Ph.D. of Herbology-Undergraduates 23.3828829 37.51044 FALSE
kruskalmc(sa$Sensitivity,sa$Group)
## Multiple comparison test after Kruskal-Wallis
## p.value: 0.05
## Comparisons
## obs.dif critical.dif difference
## KMD-Ph.D. of Herbology 26.875000 44.74725 FALSE
## KMD-Undergraduates 4.600225 27.19549 FALSE
## Ph.D. of Herbology-Undergraduates 22.274775 37.51044 FALSE